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Abstract
There are many evolution partial differential equations which can be cast
into Hamiltonian form. Conservation laws of these equations are related
to one-parameter Hamiltonian symmetries admitted by the PDEs. The
same result holds for semidiscrete Hamiltonian equations. In this paper we
consider semidiscrete canonical Hamiltonian equations. Using symmetries,
we find conservation laws for the semidiscretized nonlinear wave equation and
Schrödinger equation.

PACS numbers: 0220, 0230J, 0365

1. Introduction

Many partial differential equations (PDEs) of non-dissipative continuum mechanics can be
presented in Hamiltonian form (see [1] and references therein). It is well known that
conservation laws of Hamiltonian PDEs are related to one-parameter Hamiltonian symmetries
[2]. The analogue of this result holds in the semidiscrete case with no change in the statement
although the framework must be modified [3].

In the present paper we examine canonical Hamiltonian equations

vt = δH
δw

wt = −δH
δv

(1.1)

which form a special type of Hamiltonian equations. For instance, the nonlinear wave equation

vtt = �v − V ′(v) (1.2)

and the nonlinear Schrödinger equation

iψt + �ψ + F ′(|ψ |2)ψ = 0 (1.3)

can be rewritten in the form (1.1). We will introduce semidiscrete analogues of the canonical
Hamiltonian PDEs and show how one can use the Hamiltonian form of Noether’s theorem to
find conservation laws for these equations.
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To find conservation laws of semidiscrete equations with the help of Noether’s theorem,
we need to know symmetries in the evolutionary form. It is possible to find semidiscrete
equations which admit a known symmetry group. One can use the method of finite-difference
invariants [4], i.e. to approximate the considered differential equation by differential–difference
invariants of the admitted symmetry group. The method was proposed for difference equations,
but it can be easily adopted for semidiscrete equations. Alternatively, it may be possible to
find a discrete realization of the considered symmetry algebra. This realization can be used
to construct invariant differential–difference equations [5]. However, it is not guaranteed that
the obtained invariant semidiscrete equations can be cast into Hamiltonian form. For these
reason we will semidiscretize the equations, preserving the Hamiltonian form, and then look
for admitted symmetries.

Different methods which can be used to find symmetries of discrete and semidiscrete
equations are discussed, for example, in [6]. The most successful application was shown
for linear difference equations [6–8], where for the considered equations symmetry algebras
isomorphic to those of the underlying continuous equations were found. Nevertheless, it is not
known how to find all symmetries admitted by nonlinear semidiscrete equations.

One of the possibilities, which we exploit in this paper, is to make use of the admitted Lie
point symmetries. Many Lie point symmetries of semidiscrete equations can be easily found
as Lie point symmetries of the underlying continuous equations preserved under the space
discretization. In both continuous and semidiscrete cases these symmetries are given by the
same vector fields. Using factorization, one can obtain corresponding evolutionary operators.
If the latter are Hamiltonian symmetries, they let us find conservation laws. Obviously, for our
purpose we will not be interested in all symmetries but only in Hamiltonian ones.

The layout of the paper is as follows. In section 2 we briefly introduce Hamiltonian
equations and specify canonical Hamiltonian equations. Symmetries and the Hamiltonian
form of Noether’s theorem are discussed in section 3. In sections 4 and 5 we examine
semidiscretizations of equations (1.2) and (1.3) and find their conservation laws. In final
section 6 we make concluding remarks. In particular, we mention the connection between
Euler–Lagrange equations and canonical Hamiltonian equations.

2. Hamiltonian equations

For simplicity we will consider the case of one space coordinate x. We assume that the solutions
are sufficiently smooth that all variational derivatives tend to zero as the solution tends to zero
and the solution and a number of its space derivatives tend to zero as |x| → ∞. We suppose
that the solution decays fast enough so that all integrals and sums make sense.

2.1. Hamiltonian partial differential equations

Many systems of evolution equations

ut = K(x,u(m))

where u denotes N dependent variables u = (u1, u2, . . . , uN)T and u(m) =
(u,u1,u2, . . . ,um) represents u and a finite set of derivatives of u with respect to space
coordinate x, can be cast into the Hamiltonian form

ut = D
(
δH
δu

)
H[u] =

∫
H(x,u(n)) dx

δH
δu

=
(
δH
δu1

,
δH
δu2

, . . . ,
δH
δuN

)T

(2.1)
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with the help of the Hamiltonian functional H[u], variational operator δ · /δu and the linear
operator D [2]. We denote as F the space of functionals∫

P(t, x,u(k)) dx k ∈ N.

The operator D must be Hamiltonian, i.e. it forms the Poisson bracket

{P,L} =
∫ (

δP
δu

)T

D
(
δL
δu

)
dx (2.2)

satisfying the conditions of skew-symmetry

{P,L} = −{L,P} (2.3)

and the Jacobi identity

{{P,L},R} + {{R,P},L} + {{L,R},P} = 0 (2.4)

for all functionals P,L,R ∈ F .
The variational derivatives of a functional can be found by the action of the Euler operators

on the integrand

δH
δui

= Ei(H)

Ei = ∂ ·
∂ui

−Dx

(
∂ ·
∂ui1

)
+ D2

x

(
∂ ·
∂ui2

)
+ · · · + (−1)nDn

x

(
∂ ·
∂uin

)
+ · · ·

(2.5)

where Dx is the total space derivative operator.

2.2. Canonical Hamiltonian equations

Canonical Hamiltonian equations form a subset of equations (2.1) characterized by an even-
dimensional space of dependent variables N = 2n, u = (v1, . . . , vn, w1, . . . , wn)T , and the
canonical Hamiltonian operator

J =
(

0n In

−In 0n

)
(2.6)

where In is the n× n identity matrix and 0n is the n× n zero matrix. Thus these Hamiltonian
equations have the form (1.1). It is easy to see that the Poisson bracket generated by operator
J

{P,L} =
∫ n∑

i=1

(
δP
δvi

δL
δwi

− δP
δwi

δL
δvi

)
dx

satisfies skew-symmetry (2.3) and Jacobi identity (2.4).

2.3. Semidiscrete Hamiltonian equations

Given a Hamiltonian PDE, we attempt to discretize both the Poisson bracket and the
Hamiltonian functional so that we preserve Hamiltonian structure.

To consider semidiscrete equations we introduce a two-dimensional mesh which is uniform
in space and continuous in time. Let us denote the mesh points as {xi(t)}, i ∈ Z, t � 0 and
define mesh � by two conditions:

� : xi+1(t)− xi(t) = xi(t)− xi−1(t) xi(t + τ) = xi(t) i ∈ Z t, τ � 0. (2.7)
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The first equation requires the space mesh to be uniform for any fixed time. The second
equation requires that only vertical mesh lines in the time–space plane are considered.

Now we can introduce discrete space derivatives u
h

i
1 = D

+h
ui , u

h

i
2 = D

−h
u
h

i
1, . . . ,

u
h

i
2k+1 = D

+h
u
h

i
2k , u

h

i
2k+2 = D

−h
u
h

i
2k+1, . . . , i = 1, . . . , N , where D

+h
and D

−h
are the right and

left discrete differentiation operators

D
+h

= S+ − 1

h
D
−h

= 1 − S−
h

(2.8)

defined with the help of the right shift S+ and left shift S− operators,

S+f (x) = f (x + h) S−f (x) = f (x − h). (2.9)

We will consider the space of discrete derivatives u
h

(m) = (u,u
h

1,u
h

2, . . . ,u
h
m) and

functionals of the form

P
h

=
∑
�

P
h
(t, x, h,u

h

(m))h (2.10)

where the summation is taken over all space points of mesh � for some fixed time. We denote
the space of such functionals as F

h
.

We assume that the Hamiltonian operator D can be approximated by an operator D
h

such

that the discrete bracket

{P
h
,L
h

}h =
∑
�


δ P

h

δu




T

D
h


δ L

h

δu


h (2.11)

defines a Poisson bracket for functionals from F
h

, i.e. the bracket {·, ·}h is skew-symmetric and

satisfies the Jacobi identity. Then we can choose some approximation H
h

of the Hamiltonian

H to obtain the set of semidiscrete Hamiltonian equations

u̇j = D
h


δH

h

δuj


 j ∈ Z (2.12)

which approximate equation (2.1) on mesh (2.7).
For the space discretization of the canonical Hamiltonian PDEs we can keep the canonical

operator J since it generates a discrete Poisson bracket, namely

{P
h
,L
h

}h =
∑
�

n∑
i=1


δ P

h

δvi

δ L
h

δwi
−

δ P
h

δwi

δ L
h

δvi


h

and take a discretization H
h

of the Hamiltonian functional H. This procedure provides us with

the semidiscrete canonical Hamiltonian equations,

v̇j =
δH

h

δwj

ẇj = −
δH

h

δvj
j ∈ Z (2.13)

where we have used vector notation v = (v1, . . . , vn)T , w = (w1, . . . , wn)T .
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3. Symmetries and conservation laws

3.1. Invariance of semidiscrete equations

Let Z
h

be the space of sequences of variables (t, x, h,u,u
h

1,u
h

2, . . .) and A
h

be the space of

analytic functions of a finite number of variables z from Z
h

.

Invariance of the semidiscrete equations

u̇ = F (z) Fi ∈ A
h

(3.1)

defined in the points of some two-dimensional mesh � was considered in [3]. Symmetries of
equations (3.1) are transformations generated by vector fields of the form

X = ξ t (z)
∂

∂t
+ ξx(z)

∂

∂x
+ ηi(z)

∂

∂ui
+ · · · ξ t , ξ x, ηi ∈ A

h
(3.2)

which leave the equations and the mesh invariant. The infinitesimal criterion of invariance can
be presented by the three conditions

X(u̇ − F (z)) = 0 (3.3)

D
−h

D
+h
(ξx) = 0 Dt(ξ

x) = 0 (3.4)

which are to be satisfied on the solutions of (3.1). Condition (3.3) requires the invariance
of equations (3.1), while conditions (3.4) require that of mesh �. The operator X must be
prolonged on all variables appearing in equation (3.1)

X = ξ t
∂

∂t
+ ξx

∂

∂x
+ ηi

∂

∂ui
+ φi ∂

∂u̇i
+ ζ

h

i
1

∂

∂ u
h

i
1

+ ζ
h

i
2

∂

∂ u
h

i
2

+ · · · + D
+h
(ξx)

∂

∂h
. (3.5)

On the uniform in space grid the coefficients of the prolonged operator are defined by the
prolongation formulae

φi = Dt(η
i)− u̇iDt (ξ

t )− ui1Dt(ξ
x) ζ

h

i
1 = D

+h
(ηi)− S+(u̇

i)D
+h
(ξ t )− u

h

i
1D

+h
(ξx)

ζ
h

i
2 = D

−h
D
+h
(ηi)− 2 u

h

i
2 D

+h
(ξx)− 1

h
S+(u̇

i)D
+h
(ξ t ) +

1

h
S−(u̇i)D−h

(ξ t ) · · · .
(3.6)

Note that ui1 = Dx(u
i) is the ‘continuous’ derivative. It is assumed to be in some discrete

representation, for example, D̃
h

0(u), which will be introduced below.

Let us note that prolongation formulae for discrete derivatives are obtained with the help
of series expansions of these derivatives. For example, the coefficient ζ

h

i
1 is found using the

expansion

u
h

i
1
∗ = ui

∗
(t, x + h)− ui

∗
(t, x)

h∗ = ui1
∗

+
h∗

2!
ui2

∗
+ · · ·

where h∗ = x∗(t, x + h) − x∗(t, x) and the operation ∗ denotes the infinitesimal Lie
transformation of the considered variables

t∗ = t + aξ t + · · · x∗ = x + aξx + · · · ui
∗ = ui + aηi + · · ·

corresponding to the transformation group parameter a. We refer an interested reader to [9,10]
for details.
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Operators of the form (3.2) are called Lie–Bäcklund (or generalized) symmetries. It is
a difficult task to find Lie–Bäcklund operators admitted by discrete equations. However, Lie
point symmetries

X = ξ t (t, x,u)
∂

∂t
+ ξx(t, x,u)

∂

∂x
+ ηi(t, x,u)

∂

∂ui
+ · · · (3.7)

where coefficients ξ t , ξx and η depend only on dependent and independent variables, are
easier to detect since such symmetries are given by the same vector fields in the continuous
and discrete cases [9]. Practically, one can check whether Lie point symmetries admitted by the
underlying PDEs are admitted by the semidiscrete equations or not. Although this procedure
does not guarantee that we find all symmetries, it lets us avoid solving discrete determining
equations.

3.2. Factorization of operators

Following [9, 10], let us consider a special operation of left multiplication of a Lie–Bäcklund
operator by an analytic function ξ̃ (z) ∈ A

h
:

ξ̃ ∗X = ξ̃ ξ t
∂

∂t
+ ξ̃ ξ x

∂

∂x
+ ξ̃ ηi

∂

∂ui
+ · · · + D

+h
(ξ̃ ξ x)

∂

∂h
. (3.8)

The first coordinates in operator ξ̃ ∗X are multiplied by ξ̃ (z), while the remaining coordinates
are computed according to the prolongation formulae (3.6).

The operator

ξ t (z) ∗Dt + ξx(z) ∗D
h

x (3.9)

where Dt is the total time derivative operator and D
h

x is a discrete presentation of the total

space derivative operatorDx , plays the role of an ideal of the Lie algebra of operators (3.2) [3].
There are several possibilities to choose operator D

h
x . One can take a representation based on

the right or left discrete derivative [9, 10]

D+ = ∂

∂x
+ D̃

+h
(u)

∂

∂u
+ · · · D̃

+h
=

∞∑
n=1

(−h)n−1

n
D
+h

n

D− = ∂

∂x
+ D̃

−h
(u)

∂

∂u
+ · · · D̃

−h
=

∞∑
n=1

hn−1

n
D
−h

n

(3.10)

or the discrete representation based on the central-difference derivative [3]

D0 = ∂

∂x
+ D̃

h
0(u)

∂

∂u
+ · · · D̃

h
0 =

∞∑
k=0

α2k+1h
2k
D
h

2k+1
0 D

h
0 = S+ − S−

2h
(3.11)

with coefficients

α2k+1 = (−1)k
1

2

3

4
· · · 2k − 1

2k

1

2k + 1
= (−1)k

2k + 1

(2k − 1)!!

2kk!
(2k − 1)!! = 1 · 3 · 5 · · · (2k − 1).

Let us mention that the operator D̃
h

0 can be presented in terms of powers of the shift

operator S+:

D̃
h

0 =
∞∑

k=−∞
ckSk Sk = (S+)

k (3.12)
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with convergent coefficients ck . To find this representation we rewrite this operator as

D̃
h

0 = 1

2h

∞∑
k=0

α2k+1

22k
(S+ − S−)2k+1. (3.13)

Using

(S+ − S−)2k+1 =
k∑

j=0

(−1)j
(2k + 1)!

j !(2k + 1 − j)!
S2k+1−2j +

2k+1∑
j=k+1

(−1)j
(2k + 1)!

j !(2k + 1 − j)!
S2k+1−2j

=
k∑

p=0

(−1)k−p (2k + 1)!

(k − p)!(k + 1 + p)!
S2p+1

+
k∑

p=0

(−1)k+1+p (2k + 1)!

(k − p)!(k + 1 + p)!
S−2p−1

= (−1)k
k∑

p=0

(−1)p
(2k + 1)!

(k − p)!(k + 1 + p)!
(S2p+1 − S−2p−1)

we obtain

D̃
h

0 = 1

2h

∞∑
p=0

cp(S2p+1 − S−2p−1) (3.14)

where the coefficients are given by the series

cp = (−1)p
∞∑
k=p

(−1)k
α2k+1

22k

(2k + 1)!

(k − p)!(k + 1 + p)!

= (−1)p
∞∑
k=p

1

k + 1 + p

1

22k

((2k − 1)!!)2

(k − p)!(k + p)!
. (3.15)

Lemma 3.1. The series (3.15) defining coefficients cp for p ∈ N are convergent.

Proof. Using (k + p)!(k − p)! � (k!)2 we obtain

|cp| �
∞∑
k=p

1

k + 1 + p

(
(2k)!

(2k(k)!)2

)2

.

We use the bounds on the factorial provided by Stirling’s expansion

nn exp(−n)
√

2πn < n! < nn
√

2πn exp

(
−n +

1

12n

)
for n ∈ N

to obtain the inequality

1

k + 1 + p

(
(2k)!

(2k(k)!)2

)2

<
1

πk(k + 1 + p)
exp

(
1

12k

)
for k ∈ N

that ensures that the series defining cp converges, moreover cp ∼ 1/|p| as p → ∞. �

One can easily check that the operators D̃
+h

and D̃
−h

cannot be presented in the form (3.12)

with convergent coefficients.
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Lemma 3.2. The operator D̃
h

0 is skew-adjoint, i.e.

∞∑
i=−∞

viD̃
h

0uih = −
∞∑

i=−∞
uiD̃

h
0vih

for {ui}, {vi}, i ∈ Z such that ui, vi → 0 as i → ∞.

Proof. The equality can be checked with the help of (3.14). �

In what follows we will use D0. With the help of the ideal ξ t ∗Dt + ξx ∗D0 we can find
the evolutionary operator corresponding to the operator (3.2),

X̄ = X − ξ t ∗Dt − ξx ∗D0 = η̄i
∂

∂ui
+ · · · η̄i = ηi − ξ t u̇i − ξxD̃

h
0(u

i). (3.16)

On the solutions of equations (2.12) we can exclude time derivatives u̇i , i = 1, . . . , N from
the coefficients of the evolutionary operator.

It is important to note that although the factorization let us find evolutionary operators
corresponding to given Lie point operators, generally, the obtained evolutionary operators do
not have to be admitted by the semidiscrete equations which admit the original non-evolutionary
operators. In the continuous case ξ t ∗Dt = ξ t ·Dt and ξx ∗Dx = ξx ·Dx , i.e. the operation ∗
is equivalent to a left multiplication of the prolonged operator [9]. The operators Dt and Dx

are admitted by all differential equations and, consequently, the operators ξ t ∗Dt and ξx ∗Dx

are also admitted by all equations. It follows that an evolutionary operator is admitted if it
corresponds to an admitted non-evolutionary operator [2].

This result does not hold in the semidiscrete case. In the general case operator ξ t ∗Dt =
ξ t · Dt is admitted, but the operator ξx ∗ D0 is not. Thus, having obtained an evolutionary
operator, one has to check that this operator or the operator ξx ∗ D0, which is used in the
factorization, is admitted by the considered semidiscrete equations.

We can provide only a very restricted class of operators ξx ∗ D0 which are admitted by
an arbitrary discrete equation.

Lemma 3.3. For ξx such that D
+h
(ξx) = 0 we have

ξx ∗D0 = ξx ·D0

and, consequently, this operator is admitted by all difference equations.

Proof. The result follows from the prolongation formulae. �

Remark. The condition D
+h
(ξx) = 0 is very restrictive, but its multi-dimensional analogue

D
+hi

(ξ xi ) = 0

where xi is an independent space variable and D
+hi

is the right discrete derivative with respect

to xi , leaves more freedom. For example, it allows rotations in XiXj , i �= j planes

Xi,j = xi
∂

∂xj
− xj

∂

∂xi
.
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3.3. Conservation laws

For a system of Hamiltonian equations (2.13) considered on the grid (2.7) we have the following
types of the conservation laws:

3.3.1. Conservation of symplecticity. Due to their canonical form semidiscrete equations
possess the conservation of symplecticity

d

dt
ω
h

= 0 ω
h

=
∞∑

j=−∞
dvj ∧ dwj h =

∞∑
j=−∞

n∑
i=1

dvij ∧ dwi
j h (3.17)

where dvj = (dv1
j , . . . , dvnj )

T and dwj = (dw1
j , . . . , dwn

j )
T are solutions of the variational

equations

dv̇ij =
n∑

k=1

∑
l

∂

∂wk
j+l


δH

h

δwi
j


 dwk

j+l +
n∑

k=1

∑
l

∂

∂vkj+l


δH

h

δwi
j


 dvkj+l

dẇi
j = −

n∑
k=1

∑
l

∂

∂wk
j+l


δH

h

δvij


 dwk

j+l −
n∑

k=1

∑
l

∂

∂vkj+l


δH

h

δvij


 dvkj+l .

We suppose that dvj , dwj → 0 as j → ∞. Differentiating the 2-form ω
h

d

dt
ω
h

=
∞∑

j=−∞

n∑
i=1

dv̇ij ∧ dwi
j h +

∞∑
j=−∞

n∑
i=1

dvij ∧ dẇi
j h

=
∞∑

j,l=−∞

n∑
i,k=1

∂

∂wk
j+l


δH

h

δwi
j


 dwk

j+l ∧ dwi
j h

+
∞∑

j,l=−∞

n∑
i,k=1

∂

∂vkj+l


δH

h

δwi
j


 dvkj+l ∧ dwi

j h

−
∞∑

j,l=−∞

n∑
i,k=1

∂

∂wk
j+l


δH

h

δvij


 dvij ∧ dwk

j+l h

−
∞∑

j,l=−∞

n∑
i,k=1

∂

∂vkj+l


δH

h

δvij


 dvij ∧ dvkj+l h

and using

∂

∂wk
j+l


δH

h

δwi
j


 = ∂

∂wk
j


 δH

h

δwi
j+l


 ∂

∂vkj+l


δH

h

δvij


 = ∂

∂vkj


 δH

h

δvij+l




∂

∂vkj+l


δH

h

δwi
j


 = ∂

∂wk
j


 δH

h

δvij+l




we obtain the conservation of the symplectic form.
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This is a generalization of the symplectic structure for the Hamiltonian ODEs [11] to
the infinite set of semidiscrete equations. Let us note that recently proposed multi-symplectic
formulation of PDEs [12–15] allows one to consider local conservation of symplecticity, which
we do not have in the present framework.

Underlying equations (1.1) possess the conservation of symplecticity

d

dt
ω = 0 ω =

∫
dv ∧ dw dx =

∫ n∑
i=1

dvi ∧ dwi dx (3.18)

that is the continuous limit of (3.17). In this case dv and dw are solutions of the variational
equations for (1.1)

dvit = d̂

(
δH
δwi

)
=

n∑
k=1

∑
l

∂

∂wk
l

(
δH
δwi

)
dwk

l +
n∑

k=1

∑
l

∂

∂vkl

(
δH
δwi

)
dvkl

dwi
t = −d̂

(
δH
δvi

)
= −

n∑
k=1

∑
l

∂

∂wk
l

(
δH
δvi

)
dwk

l −
n∑

k=1

∑
l

∂

∂vkl

(
δH
δvi

)
dvkl

where the operator d̂ denotes the vertical differential of the vertical form it acts on. In our case
we have vertical 0-forms, i.e. functions. We assume that dv, dw and their space derivatives
which appear in the variational equations decay at x → ∞. Let us show that the conservation
of symplecticity using the variational complex (see, for example, [2]):

d

dt
ω =

∫ ( n∑
i=1

dvit ∧ dwi +
n∑
i=1

dvi ∧ dwi
t

)
dx

=
∫ ( n∑

i=1

d̂

(
δH
δwi

)
∧ dwi −

n∑
i=1

dvi ∧ d̂

(
δH
δvi

))
dx

=
∫

d̂

( n∑
i=1

δH
δvi

dvi +
δH
δwi

dwi

)
dx = δ

∫ ( n∑
i=1

δH
δvi

dvi +
δH
δwi

dwi

)
dx.

Using integration by parts, we obtain that

∫ n∑
i=1

δH
δvi

dvi dx =
∫ n∑

i=1

∑
k

(−Dx)
k ∂H

∂vik
dvi dx =

∫ n∑
i=1

∑
k

∂H

∂vik
dvik dx

because dvik , i = 1, . . . , n tend to zero as x → ∞. Since the same result is valid for variables
w we obtain ∫ ( n∑

i=1

δH
δvi

dvi +
δH
δwi

dwi

)
dx =

∫
d̂H dx = δH

so that

d

dt
ω = δ2H = 0

as follows from the exactness of the variational complex.
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3.3.2. Conservation of distinguished functionals.

Definition 3.4. For a given Hamiltonian operator D
h

a distinguished functional is a functional

C
h
(x, h,u

h

(n)) such that

D
h


δ C

h

δu


 = 0. (3.19)

It follows that a functional is distinguished if and only if its Poisson bracket with every other
functional is trivial:

{C
h
,H
h

}h = 0 for any H
h

∈ F
h
. (3.20)

Distinguished functionals are conserved by semidiscrete equations originating from any
Hamiltonian functional. For the canonical bracket there are no non-trivial distinguished
functionals so that we do not obtain conservation laws of this type.

3.3.3. Hamiltonian form of Noether’s theorem.

Definition 3.5. The Hamiltonian vector field associated with a functional P
h

is the unique

smooth vector field XP satisfying

XP (F
h
) = {F

h
,P
h

}h. (3.21)

In the coordinate form it can be presented as the operator

XP = D
h


δ P

h

δui


 ∂

∂ui
. (3.22)

Some symmetries (3.2) are given as Hamiltonian vector fields or are equivalent to
Hamiltonian vector fields under factorization (3.16). Such vector fields let us use the following
theorem [3].

Theorem 3.6. For a Hamiltonian system of semidiscrete evolution equations (2.12) a
Hamiltonian vector field XP determines a generalized symmetry of the system if and only
if there is an equivalent functional P̃

h
= P

h
− C

h
, differing from P

h
only by a time-dependent

distinguished functional C
h
(t, x, h, u(n)), such that P̃

h
determines a conservation law.

For the operator J generating the canonical bracket a Hamiltonian vector field has the
form

XP =
δ P
h

δwi

∂

∂vi
−

δ P
h

δvi

∂

∂wi
(3.23)

where P
h

is the generating functional. The canonical bracket has only trivial time-dependent

functionals, i.e. functions f (t). Thus, for a Hamiltonian symmetry (3.23) there corresponds a
conservation law P̃

h
= P

h
−f (t), where the function f (t) needs to be found with the help of the

considered equations. In a particular case when the Hamiltonian functional and the considered
Hamiltonian symmetry are time independent we obtain a linear function f (t) = at + b,
a, b = constant.
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4. The nonlinear wave equation

In this section we consider the nonlinear wave equation

vtt = vxx − V ′(v) (4.1)

where V (v) is some smooth function. For simplicity, we consider the case of scalar v. With
the help of a new variable w = vt , equation (4.1) can be rewritten as the system

vt = w

wt = vxx − V ′(v).
(4.2)

This is a canonical Hamiltonian system generated by the Hamiltonian functional

H =
∫ (

w2

2
+
v2
x

2
+ V (v)

)
dx. (4.3)

Let us take the following approximation of the Hamiltonian functional:

H
h

=
∑
�

H [v,w]h H = w2

2
+
v
h

2
1

2
+ V (v). (4.4)

It provides us with a system of semidiscrete equations,

v̇ = w

ẇ = v
h

2 − V ′(v).
(4.5)

For arbitrary V (v) the admitted transformation group for (4.5) is two dimensional. Its Lie
algebra is spanned by the operators

X1 = ∂

∂t
X2 = ∂

∂x
. (4.6)

The Lorentz transformation

X3 = x
∂

∂t
+ t

∂

∂x

admitted by the underlying system (4.2) with arbitrary V (v) [16], is lost under discretization
since it breaks the mesh invariance. Thus in the case of arbitrary V (v)Noether’s theorem gives
two conservation laws:

(a) The time translationX1 leads to the conservation of the Hamiltonian functional H
h

. Indeed,

the factorization of operator X1 gives the evolutionary vector field

X̄1 = w
∂

∂v
+
(
v
h

2 − V ′(v)
) ∂

∂w

which is generated by the Hamiltonian functional. Thus we obtain conservation of the
Hamiltonian functional (4.4) that denotes the conservation of energy.

(b) The space translation X2 corresponds to the evolutionary operator

X̄2 = D̃
h

0(v)
∂

∂v
+ D̃

h
0(w)

∂

∂w
. (4.7)
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Checking condition (3.23) for the coefficients of operator X̄2, we find the generating
functional

P
h

2 =
∑
�

wD̃
h

0(v)h = −
∑
�

vD̃
h

0(w)h. (4.8)

This functional is a conservation law of the semidiscrete equations (4.5). In the continuous
limit it corresponds to the functional

P2 =
∫

wvx dx = −
∫

vwx dx (4.9)

which is a conservation law of equations (4.2). In physical applications this conservation
law is referred to as linear momentum.
In order to obtain this conservation law we need to consider ‘non-local’ functionals, i.e.
functionals which are defined as double sums over the mesh points, since operator D̃

h
0 is

a sum over infinitely many mesh points.

Let us consider the special cases of the potentialV (v)which lead to additional Hamiltonian
symmetries

(a) For the quadratic potential V (v) = Cv2/2 there is an infinite series of conservation laws
for the wave system (4.5). In this case the semidiscrete system admits the infinite set of
Hamiltonian operators

Yk = D
h

0(v
h

2k)
∂

∂v
+ D

h
0(w

h
2k)

∂

∂w
k = 0, 1, . . .

which provides us with the infinite set of conserved functionals

R
h
k =

∑
�

wD
h

0(v
h

2k)h = −
∑
�

vD
h

0(w
h

2k)h.

In the continuous limit these conservation laws correspond to the functionals

Rk =
∫

vw(2k+1) dx

which are conserved quantities for the system (4.2).
Since for the quadratic potential we obtain the system of linear equations their solutions
possess a superposition principle. It is reflected in the invariance with respect to the
symmetry

Z = α(t, x)
∂

∂v
+ αt(t, x)

∂

∂w

where the function α(t, x) is an arbitrary solution of the equation

αtt (t, x) = α(t, x + h)− 2α(t, x) + α(t, x − h)

h2
− Cα(t, x). (4.10)

The operator Z is Hamiltonian. It corresponds to the functional

T
h

=
∑
�

(α(t, x)w − αt(t, x)v)h

which is a conservation law of the semidiscrete linear system if function α(t, x) satisfies
equation (4.10). In the continuous limit this functional goes to the functional

T =
∫
(α(t, x)w − αt(t, x)v) dx

which is a conservation law of (4.2) if the function α(t, x) satisfies the equation

αtt (t, x) = αxx(t, x)− Cα(t, x). (4.11)
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Table 1. A number of conservation laws for the wave system (4.5) without a potential V ′(v) ≡ 0,
which correspond to particular cases of the symmetry Z = α(t, x) ∂

∂v
+ αt (t, x)

∂
∂w

.

Function α(t, x) Operator Z Discrete conservation law Continuous conservation law

1
∂

∂v

∑
�

wh

∫
w dx

t t
∂

∂v
+

∂

∂w

∑
�

(tw − v)h

∫
(tw − v) dx

x x
∂

∂v

∑
�

xwh

∫
xw dx

tx tx
∂

∂v
+ x

∂

∂w

∑
�

(txw − xv)h

∫
(txw − xv) dx

t2 + x2 (t2 + x2)
∂

∂v
+ 2t

∂

∂w

∑
�

((t2 + x2)w − 2tv)h
∫
((t2 + x2)w − 2tv) dx

(b) Let us consider the case C = 0, i.e. the wave system (4.5) without a potential V ′(v) ≡ 0,
in detail. The symmetry Z is specified by a solution of the equation

αtt (t, x) = α(t, x + h)− 2α(t, x) + α(t, x − h)

h2
. (4.12)

We present a number of conservation laws corresponding to the symmetry Z taking
particular solutions α(t, x) of equation (4.12) in table 1.
Let us note that the continuous conservation laws in the case V ′(v) ≡ 0 are given by
the function α(t, x) satisfying equation (4.11) with C = 0. The general solution can be
written down as

α(t, x) = α1(t − x) + α2(t + x)

where α1 and α2 are arbitrary functions.

Example 4.1. As we mentioned before the factorized operator may fail to be admitted. Let us
consider V ′(v) ≡ 0. In this case system (4.5) admits the scaling symmetry

X∗ = −t
∂

∂t
− x

∂

∂x
+ w

∂

∂w
.

The corresponding evolutionary vector field

X̄∗ = (tw + xD̃
h

0(v))
∂

∂v
+ (w + tv

h
2 + xD̃

h
0(w))

∂

∂w

found with the help of the factorization formula (3.16), is Hamiltonian. It is generated by the
functional

P
h

∗ = t H
h

+
∑
�

xwD̃
h

0(v)h.

However, neither the functional P
h

∗ is a conservation law nor the canonical operator X̄∗ is a

symmetry of the semidiscrete system (4.5) with V ′(v) ≡ 0. It happens because the operator

x ∗D0 = x
∂

∂x
+ xD̃

h
0(v)

∂

∂v
+ xD̃

h
0(w)

∂

∂w
+ · · ·

which is used for the factorization

X̄∗ = X∗ − t ∗Dt − x ∗D0



Conservation laws of semidiscrete canonical Hamiltonian equations 3665

is not admitted by the semidiscrete system: the second equation does not allow this operator
since

2v
h

2 + xD̃
h

0(ẇ) �= D
−h

D
+h
(xD̃

h
0(v)) (4.13)

on the solutions of the semidiscrete equations. In the limit h → 0 equation (4.13) turns into
an equality and the continuous limit of P

h
∗, namely the functional

P∗ = t H +
∫

xwvx dx

is a conservation law of the system (4.2) with V ′ ≡ 0. ♦

5. The nonlinear Schrödinger equation

Another equation which can be cast into the canonical Hamiltonian form is the nonlinear
Schrödinger equation (1.3) which arises in nonlinear optics. It describes the main features
of the beam interaction with a nonlinear medium and is considered as the basic equation of
nonlinear optics [17]. The equation also has important applications in plasma physics [18].

Let us consider the case of one-dimensional space,

iψt + ψxx + F ′(|ψ |2)ψ = 0. (5.1)

For real and imaginary components v and w (ψ = v + iw) the Schrödinger equation can be
rewritten as the system

vt = −wxx − F ′(v2 + w2)w

wt = vxx + F ′(v2 + w2)v
(5.2)

which is a canonical Hamiltonian system. It is generated by the Hamiltonian functional

H = 1
2

∫ (|ψx |2 − F(|ψ |2)) dx. (5.3)

The system of equations (5.2) in the case of arbitrary F admits a four-dimensional
transformation group presented by the operators [17]:

X1 = ∂

∂t
X2 = ∂

∂x
X3 = w

∂

∂v
− v

∂

∂w
X4 = 2t

∂

∂x
− xw

∂

∂v
+ xv

∂

∂w
.

(5.4)

In the case F(z) = Cz2/2 there is an additional scaling symmetry

X5 = 2t
∂

∂t
+ x

∂

∂x
− v

∂

∂v
− w

∂

∂w
. (5.5)

Physically, this particular case of F(z) corresponds to an isotropic medium with the cubic
polarizability (first approximation of the nonlinear polarizability).

Let us discretize the Hamiltonian functional as

H
h

=
∑
�

H [v,w]h H = 1
2

(
v
h

2
1 + w

h

2
1 − F(v2 + w2)

)
(5.6)
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then we obtain the system of semidiscrete equations

v̇ = −w
h

2 − F ′(v2 + w2)w

ẇ = v
h

2 + F ′(v2 + w2)v.
(5.7)

Now we are in a position to go through the symmetries (5.4) and (5.5), to check whether
they are preserved under the space discretization. If they are admitted by the semidiscrete
system (5.7), they may provide conservation laws according to theorem 3.6.

(a) The time translation X1 is admitted by system (5.7). The evolutionary symmetry
corresponding toX1 is generated by the functional (5.6). Thus we find that the Hamiltonian
functional is a conservation law of equations (5.7). Its continuous limit is the functional
H. Physically, we interpret this conservation law as conservation of energy.

(b) The space translation X2 corresponds to the evolutionary operator (4.7), which we have
already examined. This symmetry leads us to the conservation law P

h
2 (see (4.8)).

(c) The evolutionary symmetry X3 is generated by the functional

P
h

3 = 1
2

∑
�

(
v2 + w2

)
h (5.8)

which is conservation of mass for the semidiscrete system (5.7). In the continuous limit
it goes to the functional

P3 = 1
2

∫ (
v2 + w2

)
dx. (5.9)

(d) The Galilean transformation X4 is not admitted in the semidiscrete case. Its coefficients
violate the second mesh invariance condition in (3.4). The action of the generated by X4

transformation on the independent variables

t̂ = t x̂ = x + 2ta

clearly shows that it destroys the mesh geometry. It follows that the continuous
conservation law corresponding to the movement of the centre of mass

P4 =
∫ (

1
2x(v

2 + w2) + t (wvx − vwx)
)

dx (5.10)

has no counterpart in the semidiscrete case.
(e) The additional symmetry X5 is admitted by equations (5.7) with quadratic F , but it is not

Hamiltonian (both in the continuous and discrete cases).

The considered symmetries and their generating functionals are shown in table 2.

6. Conclusions

In the paper we have considered semidiscrete canonical Hamiltonian equations and shown
how to find conservation laws of such equations using Noether’s theorem. Our interest in
canonical Hamiltonian equations is also motivated by their connection with Euler–Lagrange
equations [1].

Many PDEs can be presented as Euler–Lagrange equations for appropriate Lagrangian
functionals [2, 19] and can be rewritten as canonical Hamiltonian equations (1.1). Let us
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Table 2. Some symmetries and their generating functionals for the canonical bracket. The
functionals (up to some time-dependent functions) are conservation laws of the semidiscrete
canonical Hamiltonian equations.

Operator Operator in evolutionary form Functional Continuous limit of functional

∂

∂t

δH
h

δw

∂

∂v
−

δH
h

δv

∂

∂w
H
h

H
∂

∂x
D̃
h

0(v)
∂

∂v
+ D̃

h
0(w)

∂

∂w

∑
�

wD̃
h

0(v)h

∫
wvx dx

w
∂

∂v
− v

∂

∂w
1
2

∑
�

(v2 + w2)h 1
2

∫
(v2 + w2) dx

D
h

0(v
h

2k)
∂

∂v
+ D

h
0(w

h
2k)

∂

∂w

∑
�

wD
h

0(v
h

2k)h

∫
wv(2k+1) dx

α(t, x)
∂

∂v
+ αt (t, x)

∂

∂w

∑
�

(α(t, x)w − αt (t, x)v)h

∫
(α(t, x)w − αt (t, x)v) dx

illustrate this on the example of the nonlinear wave equation (4.1) which is the Euler–Lagrange
equation

δL

δv
= 0

δ

δv
= ∂

∂v
−Dt

∂

∂vt
−Dx

∂

∂vx
(6.1)

for the Lagrangian functional

L =
∫ ∫

L(v, vt , vx) dx dt L = v2
t

2
− v2

x

2
− V (v). (6.2)

With the help of the Legendre transformation

w = ∂L

∂vt
= vt H =

∫ (
∂L

∂vt
vt − L

)
dx

we obtain the Hamiltonian functional (4.3). It generates equations (4.2), which are equivalent
to (4.1).

A similar connection between Euler–Lagrange equations and canonical Hamiltonian
equations can be established in the semidiscrete case. Let us consider the semidiscretization
of functional (6.2)

L
h

=
∫ ∑

�

L
h
(v, v̇, v

h
1)h dt L

h
= v̇2

2
−

v
h

2
1

2
− V (v).

Its Euler–Lagrange equation

δL
h

δv
= 0

δ

δv
= ∂

∂v
−Dt

∂

∂v̇
− D

−h

∂

∂v
h

1
(6.3)

has the form

v̈ = v
h

2 − V ′(v). (6.4)

We can introduce the discrete Hamiltonian functional

w =
∂ L

h

∂v̇
= v̇ H

h
=
∑
�


∂ L

h

∂v̇
v̇ − L

h


h
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which in our case is the functional (4.4). It generates the semidiscrete evolution equations (4.5),
which are equivalent to (6.4).

Thus, looking for conservation laws of the semidiscrete Euler–Lagrange equations, one
can consider the equivalent canonical Hamiltonian systems and find conservation laws in the
Hamiltonian framework. They have the form∫

P dx and
∑
�

P
h
h (6.5)

in the continuous and semidiscrete cases, respectively. If necessary, the conservation laws
can be rewritten in terms of the original variables. For example, the conservation laws of the
semidiscrete wave system (4.5) with an arbitrary potential V (v) found in section 4 can be
rewritten in terms of variables used in the Lagrangian approach

P
h

1 =
∑
�

(
v̇2

2
+
v
h

2
1

2
+ V (v)

)
h P

h
2 =

∑
�

v̇D̃
h

0(v)h.

For a quadratic potential we also have the infinite series of conservation laws

R
h
k =

∑
�

v̇D
h

0(v
h

2k)h = −
∑
�

v D
h

0(v̇
h

2k)h k = 0, 1, 2, . . .

and the conservation laws

T
h

=
∑
�

(α(t, x)v̇ − αt(t, x)v)h

where the function α(t, x) must satisfy equation (4.10).
One of the advantages of the Lagrangian approach over the Hamiltonian one is the

possibility of finding local conservation. In the Hamiltonian framework we can find only global
conservation laws of the form (6.5). This advantage of the Lagrangian approach is difficult to
represent for the semidiscrete equations because as we have seen some conservation laws have
densities which involve discrete presentations of the continuous derivatives and, consequently,
are not local.

Here we considered symplecticity for the semidiscrete canonical Hamiltonian equations.
It is interesting to examine whether one can introduce an analogous structure for semidiscrete
Lagrangian equations and study its connection with the symplectic form similar to [20], where
such a connection was established for discrete mechanical systems on Lie groups. It would
also be interesting to investigate the connection between semidiscrete Hamiltonian equations
and semidiscrete equations with soliton solutions [21–23] as well as features of integrable
equations known for other (not semidiscrete) equations [24, 25].

For simplicity we considered only the case of one-dimensional space. The extension to
the multi-dimensional space is straightforward.
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